Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Logging to tensorboard with manually generated summaries (not relying on summary ops)
"""Simple example on how to log scalars and images to tensorboard without tensor ops.
License: Copyleft
__author__ = "Michael Gygli, Tao He"
import tensorflow as tf
from StringIO import StringIO
from io import StringIO
import matplotlib.pyplot as plt
import numpy as np
class Logger(object):
"""Logging in tensorboard without tensorflow ops."""
def __init__(self, log_dir, *args, **kwargs):
"""Creates a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir, *args, **kwargs)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
tag : basestring
Name of the scalar
step : int
training iteration
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
self.writer.add_summary(summary, step)
def log_images(self, tag, images, step):
"""Logs a list of images."""
im_summaries = []
for nr, img in enumerate(images):
# Write the image to a string
s = StringIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
# Create a Summary value
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
# Create and write Summary
summary = tf.Summary(value=im_summaries)
self.writer.add_summary(summary, step)
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
for c in counts:
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
def flush(self):
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment