-
-
Save teamdandelion/4f02ab8f1451e276fea1f165a20336f1 to your computer and use it in GitHub Desktop.
7 | |
2 | |
1 | |
0 | |
4 | |
1 | |
4 | |
9 | |
5 | |
9 | |
0 | |
6 | |
9 | |
0 | |
1 | |
5 | |
9 | |
7 | |
3 | |
4 | |
9 | |
6 | |
6 | |
5 | |
4 | |
0 | |
7 | |
4 | |
0 | |
1 | |
3 | |
1 | |
3 | |
4 | |
7 | |
2 | |
7 | |
1 | |
2 | |
1 | |
1 | |
7 | |
4 | |
2 | |
3 | |
5 | |
1 | |
2 | |
4 | |
4 | |
6 | |
3 | |
5 | |
5 | |
6 | |
0 | |
4 | |
1 | |
9 | |
5 | |
7 | |
8 | |
9 | |
3 | |
7 | |
4 | |
6 | |
4 | |
3 | |
0 | |
7 | |
0 | |
2 | |
9 | |
1 | |
7 | |
3 | |
2 | |
9 | |
7 | |
7 | |
6 | |
2 | |
7 | |
8 | |
4 | |
7 | |
3 | |
6 | |
1 | |
3 | |
6 | |
9 | |
3 | |
1 | |
4 | |
1 | |
7 | |
6 | |
9 | |
6 | |
0 | |
5 | |
4 | |
9 | |
9 | |
2 | |
1 | |
9 | |
4 | |
8 | |
7 | |
3 | |
9 | |
7 | |
4 | |
4 | |
4 | |
9 | |
2 | |
5 | |
4 | |
7 | |
6 | |
7 | |
9 | |
0 | |
5 | |
8 | |
5 | |
6 | |
6 | |
5 | |
7 | |
8 | |
1 | |
0 | |
1 | |
6 | |
4 | |
6 | |
7 | |
3 | |
1 | |
7 | |
1 | |
8 | |
2 | |
0 | |
2 | |
9 | |
9 | |
5 | |
5 | |
1 | |
5 | |
6 | |
0 | |
3 | |
4 | |
4 | |
6 | |
5 | |
4 | |
6 | |
5 | |
4 | |
5 | |
1 | |
4 | |
4 | |
7 | |
2 | |
3 | |
2 | |
7 | |
1 | |
8 | |
1 | |
8 | |
1 | |
8 | |
5 | |
0 | |
8 | |
9 | |
2 | |
5 | |
0 | |
1 | |
1 | |
1 | |
0 | |
9 | |
0 | |
3 | |
1 | |
6 | |
4 | |
2 | |
3 | |
6 | |
1 | |
1 | |
1 | |
3 | |
9 | |
5 | |
2 | |
9 | |
4 | |
5 | |
9 | |
3 | |
9 | |
0 | |
3 | |
6 | |
5 | |
5 | |
7 | |
2 | |
2 | |
7 | |
1 | |
2 | |
8 | |
4 | |
1 | |
7 | |
3 | |
3 | |
8 | |
8 | |
7 | |
9 | |
2 | |
2 | |
4 | |
1 | |
5 | |
9 | |
8 | |
7 | |
2 | |
3 | |
0 | |
4 | |
4 | |
2 | |
4 | |
1 | |
9 | |
5 | |
7 | |
7 | |
2 | |
8 | |
2 | |
6 | |
8 | |
5 | |
7 | |
7 | |
9 | |
1 | |
8 | |
1 | |
8 | |
0 | |
3 | |
0 | |
1 | |
9 | |
9 | |
4 | |
1 | |
8 | |
2 | |
1 | |
2 | |
9 | |
7 | |
5 | |
9 | |
2 | |
6 | |
4 | |
1 | |
5 | |
8 | |
2 | |
9 | |
2 | |
0 | |
4 | |
0 | |
0 | |
2 | |
8 | |
4 | |
7 | |
1 | |
2 | |
4 | |
0 | |
2 | |
7 | |
4 | |
3 | |
3 | |
0 | |
0 | |
3 | |
1 | |
9 | |
6 | |
5 | |
2 | |
5 | |
9 | |
2 | |
9 | |
3 | |
0 | |
4 | |
2 | |
0 | |
7 | |
1 | |
1 | |
2 | |
1 | |
5 | |
3 | |
3 | |
9 | |
7 | |
8 | |
6 | |
5 | |
6 | |
1 | |
3 | |
8 | |
1 | |
0 | |
5 | |
1 | |
3 | |
1 | |
5 | |
5 | |
6 | |
1 | |
8 | |
5 | |
1 | |
7 | |
9 | |
4 | |
6 | |
2 | |
2 | |
5 | |
0 | |
6 | |
5 | |
6 | |
3 | |
7 | |
2 | |
0 | |
8 | |
8 | |
5 | |
4 | |
1 | |
1 | |
4 | |
0 | |
3 | |
3 | |
7 | |
6 | |
1 | |
6 | |
2 | |
1 | |
9 | |
2 | |
8 | |
6 | |
1 | |
9 | |
5 | |
2 | |
5 | |
4 | |
4 | |
2 | |
8 | |
3 | |
8 | |
2 | |
4 | |
5 | |
0 | |
3 | |
1 | |
7 | |
7 | |
5 | |
7 | |
9 | |
7 | |
1 | |
9 | |
2 | |
1 | |
4 | |
2 | |
9 | |
2 | |
0 | |
4 | |
9 | |
1 | |
4 | |
8 | |
1 | |
8 | |
4 | |
5 | |
9 | |
8 | |
8 | |
3 | |
7 | |
6 | |
0 | |
0 | |
3 | |
0 | |
2 | |
6 | |
6 | |
4 | |
9 | |
3 | |
3 | |
3 | |
2 | |
3 | |
9 | |
1 | |
2 | |
6 | |
8 | |
0 | |
5 | |
6 | |
6 | |
6 | |
3 | |
8 | |
8 | |
2 | |
7 | |
5 | |
8 | |
9 | |
6 | |
1 | |
8 | |
4 | |
1 | |
2 | |
5 | |
9 | |
1 | |
9 | |
7 | |
5 | |
4 | |
0 | |
8 | |
9 | |
9 | |
1 | |
0 | |
5 | |
2 | |
3 | |
7 | |
8 | |
9 | |
4 | |
0 | |
6 | |
3 | |
9 | |
5 | |
2 | |
1 | |
3 | |
1 | |
3 | |
6 | |
5 | |
7 | |
4 | |
2 | |
2 | |
6 | |
3 | |
2 | |
6 | |
5 | |
4 | |
8 | |
9 | |
7 | |
1 | |
3 | |
0 | |
3 | |
8 | |
3 | |
1 | |
9 | |
3 | |
4 | |
4 | |
6 | |
4 | |
2 | |
1 | |
8 | |
2 | |
5 | |
4 | |
8 | |
8 | |
4 | |
0 | |
0 | |
2 | |
3 | |
2 | |
7 | |
7 | |
0 | |
8 | |
7 | |
4 | |
4 | |
7 | |
9 | |
6 | |
9 | |
0 | |
9 | |
8 | |
0 | |
4 | |
6 | |
0 | |
6 | |
3 | |
5 | |
4 | |
8 | |
3 | |
3 | |
9 | |
3 | |
3 | |
3 | |
7 | |
8 | |
0 | |
8 | |
2 | |
1 | |
7 | |
0 | |
6 | |
5 | |
4 | |
3 | |
8 | |
0 | |
9 | |
6 | |
3 | |
8 | |
0 | |
9 | |
9 | |
6 | |
8 | |
6 | |
8 | |
5 | |
7 | |
8 | |
6 | |
0 | |
2 | |
4 | |
0 | |
2 | |
2 | |
3 | |
1 | |
9 | |
7 | |
5 | |
1 | |
0 | |
8 | |
4 | |
6 | |
2 | |
6 | |
7 | |
9 | |
3 | |
2 | |
9 | |
8 | |
2 | |
2 | |
9 | |
2 | |
7 | |
3 | |
5 | |
9 | |
1 | |
8 | |
0 | |
2 | |
0 | |
5 | |
2 | |
1 | |
3 | |
7 | |
6 | |
7 | |
1 | |
2 | |
5 | |
8 | |
0 | |
3 | |
7 | |
2 | |
4 | |
0 | |
9 | |
1 | |
8 | |
6 | |
7 | |
7 | |
4 | |
3 | |
4 | |
9 | |
1 | |
9 | |
5 | |
1 | |
7 | |
3 | |
9 | |
7 | |
6 | |
9 | |
1 | |
3 | |
7 | |
8 | |
3 | |
3 | |
6 | |
7 | |
2 | |
8 | |
5 | |
8 | |
5 | |
1 | |
1 | |
4 | |
4 | |
3 | |
1 | |
0 | |
7 | |
7 | |
0 | |
7 | |
9 | |
4 | |
4 | |
8 | |
5 | |
5 | |
4 | |
0 | |
8 | |
2 | |
1 | |
0 | |
8 | |
4 | |
5 | |
0 | |
4 | |
0 | |
6 | |
1 | |
7 | |
3 | |
2 | |
6 | |
7 | |
2 | |
6 | |
9 | |
3 | |
1 | |
4 | |
6 | |
2 | |
5 | |
4 | |
2 | |
0 | |
6 | |
2 | |
1 | |
7 | |
3 | |
4 | |
1 | |
0 | |
5 | |
4 | |
3 | |
1 | |
1 | |
7 | |
4 | |
9 | |
9 | |
4 | |
8 | |
4 | |
0 | |
2 | |
4 | |
5 | |
1 | |
1 | |
6 | |
4 | |
7 | |
1 | |
9 | |
4 | |
2 | |
4 | |
1 | |
5 | |
5 | |
3 | |
8 | |
3 | |
1 | |
4 | |
5 | |
6 | |
8 | |
9 | |
4 | |
1 | |
5 | |
3 | |
8 | |
0 | |
3 | |
2 | |
5 | |
1 | |
2 | |
8 | |
3 | |
4 | |
4 | |
0 | |
8 | |
8 | |
3 | |
3 | |
1 | |
7 | |
3 | |
5 | |
9 | |
6 | |
3 | |
2 | |
6 | |
1 | |
3 | |
6 | |
0 | |
7 | |
2 | |
1 | |
7 | |
1 | |
4 | |
2 | |
4 | |
2 | |
1 | |
7 | |
9 | |
6 | |
1 | |
1 | |
2 | |
4 | |
8 | |
1 | |
7 | |
7 | |
4 | |
8 | |
0 | |
7 | |
3 | |
1 | |
3 | |
1 | |
0 | |
7 | |
7 | |
0 | |
3 | |
5 | |
5 | |
2 | |
7 | |
6 | |
6 | |
9 | |
2 | |
8 | |
3 | |
5 | |
2 | |
2 | |
5 | |
6 | |
0 | |
8 | |
2 | |
9 | |
2 | |
8 | |
8 | |
8 | |
8 | |
7 | |
4 | |
9 | |
3 | |
0 | |
6 | |
6 | |
3 | |
2 | |
1 | |
3 | |
2 | |
2 | |
9 | |
3 | |
0 | |
0 | |
5 | |
7 | |
8 | |
1 | |
4 | |
4 | |
6 | |
0 | |
2 | |
9 | |
1 | |
4 | |
7 | |
4 | |
7 | |
3 | |
9 | |
8 | |
8 | |
4 | |
7 | |
1 | |
2 | |
1 | |
2 | |
2 | |
3 | |
2 | |
3 | |
2 | |
3 | |
9 | |
1 | |
7 | |
4 | |
0 | |
3 | |
5 | |
5 | |
8 | |
6 | |
3 | |
2 | |
6 | |
7 | |
6 | |
6 | |
3 | |
2 | |
7 | |
8 | |
1 | |
1 | |
7 | |
5 | |
6 | |
4 | |
9 | |
5 | |
1 | |
3 | |
3 | |
4 | |
7 | |
8 | |
9 | |
1 | |
1 | |
6 | |
9 | |
1 | |
4 | |
4 | |
5 | |
4 | |
0 | |
6 | |
2 | |
2 | |
3 | |
1 | |
5 | |
1 | |
2 | |
0 | |
3 | |
8 | |
1 | |
2 | |
6 | |
7 | |
1 | |
6 | |
2 | |
3 | |
9 | |
0 | |
1 | |
2 | |
2 | |
0 | |
8 | |
9 | |
9 | |
0 | |
2 | |
5 | |
1 | |
9 | |
7 | |
8 | |
1 | |
0 | |
4 | |
1 | |
7 | |
9 | |
6 | |
4 | |
2 | |
6 | |
8 | |
1 | |
3 | |
7 | |
5 | |
4 |
# Copyright 2017 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
import os | |
import tensorflow as tf | |
import urllib | |
LOGDIR = '/tmp/mnist_tutorial/' | |
GIST_URL = 'https://gist.githubusercontent.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180' | |
### MNIST EMBEDDINGS ### | |
mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True) | |
### Get a sprite and labels file for the embedding projector ### | |
urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv') | |
urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png') | |
def conv_layer(input, size_in, size_out, name="conv"): | |
with tf.name_scope(name): | |
w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W") | |
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME") | |
act = tf.nn.relu(conv + b) | |
tf.summary.histogram("weights", w) | |
tf.summary.histogram("biases", b) | |
tf.summary.histogram("activations", act) | |
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
def fc_layer(input, size_in, size_out, name="fc"): | |
with tf.name_scope(name): | |
w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W") | |
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
act = tf.nn.relu(tf.matmul(input, w) + b) | |
tf.summary.histogram("weights", w) | |
tf.summary.histogram("biases", b) | |
tf.summary.histogram("activations", act) | |
return act | |
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam): | |
tf.reset_default_graph() | |
sess = tf.Session() | |
# Setup placeholders, and reshape the data | |
x = tf.placeholder(tf.float32, shape=[None, 784], name="x") | |
x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
tf.summary.image('input', x_image, 3) | |
y = tf.placeholder(tf.float32, shape=[None, 10], name="labels") | |
if use_two_conv: | |
conv1 = conv_layer(x_image, 1, 32, "conv1") | |
conv_out = conv_layer(conv1, 32, 64, "conv2") | |
else: | |
conv1 = conv_layer(x_image, 1, 64, "conv") | |
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64]) | |
if use_two_fc: | |
fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1") | |
embedding_input = fc1 | |
embedding_size = 1024 | |
logits = fc_layer(fc1, 1024, 10, "fc2") | |
else: | |
embedding_input = flattened | |
embedding_size = 7*7*64 | |
logits = fc_layer(flattened, 7*7*64, 10, "fc") | |
with tf.name_scope("xent"): | |
xent = tf.reduce_mean( | |
tf.nn.softmax_cross_entropy_with_logits( | |
logits=logits, labels=y), name="xent") | |
tf.summary.scalar("xent", xent) | |
with tf.name_scope("train"): | |
train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent) | |
with tf.name_scope("accuracy"): | |
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
tf.summary.scalar("accuracy", accuracy) | |
summ = tf.summary.merge_all() | |
embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding") | |
assignment = embedding.assign(embedding_input) | |
saver = tf.train.Saver() | |
sess.run(tf.global_variables_initializer()) | |
writer = tf.summary.FileWriter(LOGDIR + hparam) | |
writer.add_graph(sess.graph) | |
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig() | |
embedding_config = config.embeddings.add() | |
embedding_config.tensor_name = embedding.name | |
embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png' | |
embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv' | |
# Specify the width and height of a single thumbnail. | |
embedding_config.sprite.single_image_dim.extend([28, 28]) | |
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config) | |
for i in range(2001): | |
batch = mnist.train.next_batch(100) | |
if i % 5 == 0: | |
[train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]}) | |
writer.add_summary(s, i) | |
if i % 500 == 0: | |
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]}) | |
saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i) | |
sess.run(train_step, feed_dict={x: batch[0], y: batch[1]}) | |
def make_hparam_string(learning_rate, use_two_fc, use_two_conv): | |
conv_param = "conv=2" if use_two_conv else "conv=1" | |
fc_param = "fc=2" if use_two_fc else "fc=1" | |
return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param) | |
def main(): | |
# You can try adding some more learning rates | |
for learning_rate in [1E-4]: | |
# Include "False" as a value to try different model architectures | |
for use_two_fc in [True]: | |
for use_two_conv in [True]: | |
# Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2) | |
hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv) | |
print('Starting run for %s' % hparam) | |
# Actually run with the new settings | |
mnist_model(learning_rate, use_two_fc, use_two_conv, hparam) | |
if __name__ == '__main__': | |
main() |
Save sprite_1024.png
.
import numpy as np
import scipy.misc as misc
sprite_images = mnist.test.images[:1024]
x = None
res = None
for i in range(32):
x = None
for j in range(32):
img = sprite_images[i*32 + j,:].reshape((28, 28))
x = np.concatenate((x, img), axis=1) if x is not None else img
res = np.concatenate((res, x), axis=0) if res is not None else x
misc.toimage(256 - res, channel_axis=0).save('sprite_1024.png')
Last fc layer should be without tf.relu function, because later we use softmax.
I've moved the tutorial (and added a few fixes) to a GitHub repository:
https://github.com/dandelionmane/tf-dev-summit-tensorboard-tutorial
Great job, after learning how to use tensorboard, I can easily to know the performance of the algorithm via web browser.
The slides file are broken for me too
Hi,
With this version of code I am getting very poor training results, not at all like in the video,
I have no idea why. It is in the default settings 2 conv, 2 fc, learning rate 1e-4 Adam. Different runs may land in very different training accuracy but more often a poor accuracy and never close to 1.
Ok, after reading the other comments, the problem is clear:
it is the ReLu + softmax activation on the output. The moved tutorial repository does not have this problem. Maybe you should take this one down.
This is an amazing TensorBoard example! Love it!
Beautiful relatable example for humans to comprehend the power of tensorboard. Switching to my own data use cases will be cool.
@shekhovt Yes, the same problem to me. At this time, one dropout layer between two fully-connected neural network would make results better. Have a try.
embedding visualisation is not working for me. I can see both label and sprite image files, but tensorboard is unable to load them, it just says loading forever... I have downloaded the files from https://github.com/dandelionmane/tf-dev-summit-tensorboard-tutorial
labels file does not have a header in the first line, it simply has label(digit) in each row. Could that be a problem?
I am able to see all other graphs without any issue... Any help appreciated
Actually the sprite_1024.png from the location that @rafalfirlejczyk mentioned up above works. Thanks @rafalfirlejczyk !
I can see PCA and T-SNE views of the 1024 data points / labels. It would be very convenient if the code itself just generates the tsv and png files when it is writing out the tensor variables. Perhaps it does and I am just not seeing it? (I am new to this).