Skip to content

Instantly share code, notes, and snippets.

@BIGBALLON
BIGBALLON / extract_ILSVRC.sh
Created May 13, 2018 20:09
script for ImageNet data extract.
#!/bin/bash
#
# script to extract ImageNet dataset
# ILSVRC2012_img_train.tar (about 138 GB)
# ILSVRC2012_img_val.tar (about 6.3 GB)
# make sure ILSVRC2012_img_train.tar & ILSVRC2012_img_val.tar in your current directory
#
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md
#
# train/
@Tushar-N
Tushar-N / pad_packed_demo.py
Last active October 27, 2024 15:17
How to use pad_packed_sequence in pytorch<1.1.0
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
seqs = ['gigantic_string','tiny_str','medium_str']
# make <pad> idx 0
vocab = ['<pad>'] + sorted(set(''.join(seqs)))
# make model
abandoned
able
absolute
adorable
adventurous
academic
acceptable
acclaimed
accomplished
accurate
@karpathy
karpathy / nes.py
Last active June 7, 2025 14:26
Natural Evolution Strategies (NES) toy example that optimizes a quadratic function
"""
A bare bones examples of optimizing a black-box function (f) using
Natural Evolution Strategies (NES), where the parameter distribution is a
gaussian of fixed standard deviation.
"""
import numpy as np
np.random.seed(0)
# the function we want to optimize
@yrevar
yrevar / imagenet1000_clsidx_to_labels.txt
Last active October 14, 2025 01:02
text: imagenet 1000 class idx to human readable labels (Fox, E., & Guestrin, C. (n.d.). Coursera Machine Learning Specialization.)
{0: 'tench, Tinca tinca',
1: 'goldfish, Carassius auratus',
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead, hammerhead shark',
5: 'electric ray, crampfish, numbfish, torpedo',
6: 'stingray',
7: 'cock',
8: 'hen',
9: 'ostrich, Struthio camelus',
@karpathy
karpathy / min-char-rnn.py
Last active October 20, 2025 02:21
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)