Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
git branch | wc -l |
Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
// List all files in a directory in Node.js recursively in a synchronous fashion | |
var walkSync = function(dir, filelist) { | |
var fs = fs || require('fs'), | |
files = fs.readdirSync(dir); | |
filelist = filelist || []; | |
files.forEach(function(file) { | |
if (fs.statSync(dir + file).isDirectory()) { | |
filelist = walkSync(dir + file + '/', filelist); | |
} | |
else { |
People
![]() :bowtie: |
๐ :smile: |
๐ :laughing: |
---|---|---|
๐ :blush: |
๐ :smiley: |
:relaxed: |
๐ :smirk: |
๐ :heart_eyes: |
๐ :kissing_heart: |
๐ :kissing_closed_eyes: |
๐ณ :flushed: |
๐ :relieved: |
๐ :satisfied: |
๐ :grin: |
๐ :wink: |
๐ :stuck_out_tongue_winking_eye: |
๐ :stuck_out_tongue_closed_eyes: |
๐ :grinning: |
๐ :kissing: |
๐ :kissing_smiling_eyes: |
๐ :stuck_out_tongue: |
Country | Alpha-2 code | Alpha-3 code | Numeric code | Latitude (average) | Longitude (average) | |
---|---|---|---|---|---|---|
Afghanistan | AF | AFG | 4 | 33 | 65 | |
ร land Islands | AX | ALA | 248 | 60.116667 | 19.9 | |
Albania | AL | ALB | 8 | 41 | 20 | |
Algeria | DZ | DZA | 12 | 28 | 3 | |
American Samoa | AS | ASM | 16 | -14.3333 | -170 | |
Andorra | AD | AND | 20 | 42.5 | 1.6 | |
Angola | AO | AGO | 24 | -12.5 | 18.5 | |
Anguilla | AI | AIA | 660 | 18.25 | -63.1667 | |
Antarctica | AQ | ATA | 10 | -90 | 0 |
onPrepare: function() { | |
var disableNgAnimate = function() { | |
angular | |
.module('disableNgAnimate', []) | |
.run(['$animate', function($animate) { | |
$animate.enabled(false); | |
}]); | |
}; | |
var disableCssAnimate = function() { |
import PIL.Image | |
from cStringIO import StringIO | |
import IPython.display | |
import numpy as np | |
def showarray(a, fmt='png'): | |
a = np.uint8(a) | |
f = StringIO() | |
PIL.Image.fromarray(a).save(f, fmt) | |
IPython.display.display(IPython.display.Image(data=f.getvalue())) |
This configuration worked for me, hope it helps
It is based on: https://becominghuman.ai/deep-learning-gaming-build-with-nvidia-titan-xp-and-macbook-pro-with-thunderbolt2-5ceee7167f8b
and on: https://stackoverflow.com/questions/44744737/tensorflow-mac-os-gpu-support