Skip to content

Instantly share code, notes, and snippets.

Understanding Comparative Benchmarks

I'm going to do something that I don't normally do, which is to say I'm going to talk about comparative benchmarks. In general, I try to confine performance discussion to absolute metrics as much as possible, or comparisons to other well-defined neutral reference points. This is precisely why Cats Effect's readme mentions a comparison to a fixed thread pool, rather doing comparisons with other asynchronous runtimes like Akka or ZIO. Comparisons in general devolve very quickly into emotional marketing.

But, just once, today we're going to talk about the emotional marketing. In particular, we're going to look at Cats Effect 3 and ZIO 2. Now, for context, as of this writing ZIO 2 has released their first milestone; they have not released a final 2.0 version. This implies straight off the bat that we're comparing apples to oranges a bit, since Cats Effect 3 has been out and in production for months. However, there has been a post going around which cites various compar

Thread Pools

Thread pools on the JVM should usually be divided into the following three categories:

  1. CPU-bound
  2. Blocking IO
  3. Non-blocking IO polling

Each of these categories has a different optimal configuration and usage pattern.

Explaining Miles's Magic

Miles Sabin recently opened a pull request fixing the infamous SI-2712. First off, this is remarkable and, if merged, will make everyone's life enormously easier. This is a bug that a lot of people hit often without even realizing it, and they just assume that either they did something wrong or the compiler is broken in some weird way. It is especially common for users of scalaz or cats.

But that's not what I wanted to write about. What I want to write about is the exact semantics of Miles's fix, because it does impose some very specific assumptions about the way that type constructors work, and understanding those assumptions is the key to getting the most of it his fix.

For starters, here is the sort of thing that SI-2712 affects:

def foo[F[_], A](fa: F[A]): String = fa.toString
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs