Skip to content

Instantly share code, notes, and snippets.

From mathcomp Require Import ssreflect.
Require Import List Nat Ensembles Image.
Import ListNotations.
Notation empty := (Empty_set _).
Notation single := (Singleton _).
Notation union := (Union _).
Definition bigcup {T} (X : Ensemble (Ensemble T)) : Ensemble T :=
From mathcomp Require Import all_ssreflect.
Require Import Bool Nat.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Class lattice := Lattice {
base : finType;
meet : base -> base -> base;
From mathcomp Require Import all_ssreflect.
Require Import Bool.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Class poSet := PoSet {
base : finType;
From mathcomp Require Export fintype finset ssrbool ssreflect eqtype.
Module Type SIG.
Parameter T : finType.
Parameter A : {set T}.
Parameter F : {set T} -> {set T}.
Parameter mono : forall (X Y : {set T}), X \subset Y -> F X \subset F Y.
End SIG.
From mathcomp Require Export fintype finset ssrbool ssreflect.
Module Type FinTypeSig.
Parameter T : finType.
End FinTypeSig.
Module Type ArgFrame (FTS : FinTypeSig).
Import FTS.
Require Import Ensembles.
From mathcomp Require Import ssreflect.
Arguments Singleton {U}.
Arguments Union {U}.
Arguments Setminus {U}.
Arguments Included {U}.
Arguments Couple {U}.
Arguments Empty_set {U}.
Require Import List Bool Classical.
Import ListNotations.
From mathcomp Require Import ssreflect ssrbool.
Require Import Ensembles ProofIrrelevance Classical_sets.
Definition var := nat.
Variable fls tru : var.
Require Import List.
Import ListNotations.
Variable var : Type.
Variable tru fls : var.
Inductive prop :=
| Var : var -> prop
| Not : prop -> prop
| And : prop -> prop -> prop
From mathcomp Require Import all_ssreflect.
Variables argument position : finType.
Definition A := [set : argument].
Definition X := [set : position].
Definition Rel := rel position.
Axiom axiomA : 0 < #|argument|.
Require Export Classical.
Module ACTL.
Section Def.
Context {state action : Set} {trans : state -> action -> state -> Prop}
{tau : action} {tau_eq : forall s s', trans s tau s' <-> s = s'}.