https://gist.github.com/victor-shepardson/5b3d3087dc2b4817b9bffdb8e87a57c4
I'm using Ubuntu 16.04 with a GTX 1060
#!/usr/bin/env python | |
import math | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.nn as nn | |
from sklearn.datasets import make_moons | |
from torch import Tensor | |
from tqdm import tqdm |
import gzip | |
def gzip_search(query: str, candidate_chunks: list[str], top_k: int=1): | |
""" | |
文字列ベースで類似したテキストチャンクを推定するアルゴリズム. | |
`query`, `chunk`, および`query + " " + chunk`をそれぞれgzipで圧縮し、編集距離のようなものをベースに評価する. | |
Parameters: | |
query (str): 検索クエリとして使用する文字列. | |
top_k (int, optional): 返される類似チャンクの上位k個を指定する (default: 1). |
import torch | |
import k_diffusion as K | |
from PIL import Image | |
from torch import autocast | |
from einops import rearrange, repeat | |
def pil_img_to_latent(model, img, batch_size=1, device='cuda', half=True): | |
init_image = pil_img_to_torch(img, half=half).to(device) | |
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) |
import math | |
import torch | |
from torch import optim | |
class AdamWFinetune(optim.Optimizer): | |
r"""Implements AdamW algorithm with optional weight decay toward the starting value, to | |
prevent overfitting to the new dataset during fine-tuning. | |
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. |
#!/usr/bin/env python3 | |
""" | |
To use: | |
1. install/set-up the google cloud api and dependencies listed on https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/texttospeech/cloud-client | |
2. install pandoc and pypandoc, also tqdm | |
3. create and download a service_account.json ("Service account key") from https://console.cloud.google.com/apis/credentials | |
4. run GOOGLE_APPLICATION_CREDENTIALS=service_account.json python make_audiobook.py book_name.epub | |
""" | |
import re | |
import sys |
#!/usr/bin/env python3 | |
""" | |
To use: | |
1. install/set-up the google cloud api and dependencies listed on https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/texttospeech/cloud-client | |
2. install pandoc and pypandoc, also tqdm | |
3. create and download a service_account.json ("Service account key") from https://console.cloud.google.com/apis/credentials | |
4. run GOOGLE_APPLICATION_CREDENTIALS=service_account.json python make_audiobook.py book_name.epub | |
""" | |
import re | |
import sys |
Some planets may orbit a supermassive black hole instead of a star | |
This is almost certainly not what Denisovans looked like | |
UN climate summit: Scientists' messages to world leaders | |
A hat that zaps the scalp with electricity helps reverse male balding | |
Man sees the world in miniature after a stroke damages his brain | |
Do dads matter? Anna Machin on the fascinating science of fatherhood | |
People like the idea of a carbon tax - if the money is put to good use | |
Climate change will boost risk of extreme flooding in northern Europe | |
Fast swimming fish robot could perform underwater surveillance | |
Ad Astra: Pirates and space monkeys can't save dull space psychodrama |
https://gist.github.com/victor-shepardson/5b3d3087dc2b4817b9bffdb8e87a57c4
I'm using Ubuntu 16.04 with a GTX 1060
import jax | |
import jax.numpy as np | |
from jax import grad, jit | |
from jax.scipy.special import logsumexp | |
def dadashi_fig2d(): | |
""" Figure 2 d) of | |
''The Value Function Polytope in Reinforcement Learning'' | |
by Dadashi et al. (2019) https://arxiv.org/abs/1901.11524 |