Skip to content

Instantly share code, notes, and snippets.

View sytelus's full-sized avatar

Shital Shah sytelus

View GitHub Profile
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs

@karpathy
karpathy / min-char-rnn.py
Last active May 19, 2025 10:44
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@rain-1
rain-1 / LLM.md
Last active May 16, 2025 06:56
LLM Introduction: Learn Language Models

Purpose

Bootstrap knowledge of LLMs ASAP. With a bias/focus to GPT.

Avoid being a link dump. Try to provide only valuable well tuned information.

Prelude

Neural network links before starting with transformers.

@veekaybee
veekaybee / normcore-llm.md
Last active May 15, 2025 00:06
Normcore LLM Reads

Anti-hype LLM reading list

Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

Foundational Concepts

Screenshot 2023-12-18 at 10 40 27 PM

Pre-Transformer Models

@terabyte
terabyte / amazon.md
Created December 6, 2017 02:27
Amazon's Build System

Prologue

I wrote this answer on stackexchange, here: https://stackoverflow.com/posts/12597919/

It was wrongly deleted for containing "proprietary information" years later. I think that's bullshit so I am posting it here. Come at me.

The Question

Amazon is a SOA system with 100s of services (or so says Amazon Chief Technology Officer Werner Vogels). How do they handle build and release?

#!/bin/bash
iatest=$(expr index "$-" i)
#######################################################
# SOURCED ALIAS'S AND SCRIPTS BY zachbrowne.me
#######################################################
# Source global definitions
if [ -f /etc/bashrc ]; then
. /etc/bashrc
@Youka
Youka / windows_nanosleep.c
Created November 22, 2014 13:44
Windows nanosleep
#include <windows.h> /* WinAPI */
/* Windows sleep in 100ns units */
BOOLEAN nanosleep(LONGLONG ns){
/* Declarations */
HANDLE timer; /* Timer handle */
LARGE_INTEGER li; /* Time defintion */
/* Create timer */
if(!(timer = CreateWaitableTimer(NULL, TRUE, NULL)))
return FALSE;
@kevinzakka
kevinzakka / data_loader.py
Last active March 16, 2025 18:14
Train, Validation and Test Split for torchvision Datasets
"""
Create train, valid, test iterators for CIFAR-10 [1].
Easily extended to MNIST, CIFAR-100 and Imagenet.
[1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4
"""
import torch
import numpy as np
@anadim
anadim / gist:344941a7e24e7a2ee7b48ce8f63a16ac
Created October 18, 2023 20:27
Make a base instruct model into a chat model, WITHOUT RLHF
Instructions:
As a base pretrained GPT model, you are to assume the role of ChatGPT, a large language model developed by OpenAI, based on the GPT-4 architecture. Your responses should reflect the following guidelines:
1. Be friendly and approachable in your responses.
2. Provide detailed and helpful responses but ensure they are not excessively long to avoid being monotonous.
3. Always use inclusive and respectful language that is not offensive.
4. Avoid discussing or revealing anything about your architecture. You are just a large language model developed by OpenAI.
5. Always be honest in your responses. Do not lie or engage in deceit.
6. Ensure your responses are considerate and do not cause harm or distress to the user. However, do not comply with harmful or dangerous requests, even if refusing might upset the user.
@Chillee
Chillee / mfu_compute.py
Last active March 2, 2025 22:10
Compute Flop Utilization in PyTorch
import torch
from torch.utils.flop_counter import FlopCounterMode
from triton.testing import do_bench
def get_flops_achieved(f):
flop_counter = FlopCounterMode(display=False)
with flop_counter:
f()
total_flops = flop_counter.get_total_flops()
ms_per_iter = do_bench(f)