Skip to content

Instantly share code, notes, and snippets.

@gyglim
Last active August 23, 2023 21:29
Show Gist options
  • Save gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 to your computer and use it in GitHub Desktop.
Save gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 to your computer and use it in GitHub Desktop.
Logging to tensorboard without tensorflow operations. Uses manually generated summaries instead of summary ops
"""Simple example on how to log scalars and images to tensorboard without tensor ops.
License: BSD License 2.0
"""
__author__ = "Michael Gygli"
import tensorflow as tf
from StringIO import StringIO
import matplotlib.pyplot as plt
import numpy as np
class Logger(object):
"""Logging in tensorboard without tensorflow ops."""
def __init__(self, log_dir):
"""Creates a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
simple_value=value)])
self.writer.add_summary(summary, step)
def log_images(self, tag, images, step):
"""Logs a list of images."""
im_summaries = []
for nr, img in enumerate(images):
# Write the image to a string
s = StringIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
image=img_sum))
# Create and write Summary
summary = tf.Summary(value=im_summaries)
self.writer.add_summary(summary, step)
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
@cottrell
Copy link

Also anyone know what to put in a step to get the scalars to look similar to the keras callback scalars?

@shawnthu
Copy link

shawnthu commented Apr 3, 2019

text summary can be a new feature

@shawnthu
Copy link

shawnthu commented Apr 3, 2019

Anyone knows how to construct text summary?

@beanmilk
Copy link

What does 'License: Copyleft' mean?
Can you provide more detailed license information, such as GPL, LGPL or MPL?

Thanks!!

@gyglim
Copy link
Author

gyglim commented Jul 22, 2019

Added BSD License 2.0

@beanmilk
Copy link

@gyglim Thanks!! :)

@xrz000
Copy link

xrz000 commented Aug 28, 2019

To add text summary

from tensorboard.plugins.text import metadata

class Logger(object):
    """Logging in tensorboard without tensorflow ops."""

    def __init__(self, log_dir):
        """Creates a summary writer logging to log_dir."""
        self.writer = tf.summary.FileWriter(log_dir)

	def log_text(self, tag, value, step):
	        """Log string or 2D string tables. """
	        summary_metadata = metadata.create_summary_metadata(
	                display_name="text",
	                description="Text Summary")
	        summary_metadata = tf.SummaryMetadata.FromString(
	                summary_metadata.SerializeToString())
	        tensor = tf.make_tensor_proto(value, dtype=tf.string)
	        summary = tf.Summary(value=[tf.Summary.Value(
	            tag=tag,
	            metadata=summary_metadata,
	            tensor=tensor
	            )])
	        self.writer.add_summary(summary, step)
	        self.writer.flush()

Example usage:

logger = Logger('/tmp/test')
logger.log_text(tag="string", value="test", step=0)
logger.log_text(tag="table", value=[["r0c0", "r0c1"], ["r1c0", "r1c1"]], step=0)

Tensorboard:
text

@hipoglucido
Copy link

I get some incompatibility errors when running on tensorflow 2.0. Any plans to update this -very useful- code?

@pfk-beta
Copy link

pfk-beta commented Aug 20, 2020

Wonderful solution:) Why flush is only in log_histogram?

@Zlo7
Copy link

Zlo7 commented Oct 11, 2020

Very minor tweaks for xrz000's text summary for TF2 Compatibility:

class Logger(object):
"""Logging in tensorboard without tensorflow ops."""

def __init__(self, log_dir):
    """Creates a summary writer logging to log_dir."""
    self.writer = tf.compat.v1.summary.FileWriter(log_dir)

def log_text(self, tag, value, step):
    """Log string or 2D string tables. """
    summary_metadata = metadata.create_summary_metadata(
        display_name="text",
        description="Text Summary")
    summary_metadata = tf.compat.v1.SummaryMetadata.FromString(
        summary_metadata.SerializeToString())
    tensor = tf.make_tensor_proto(value, dtype=tf.string)
    summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(
                tag=tag,
                metadata=summary_metadata,
                tensor=tensor
            )])
    self.writer.add_summary(summary, step)
    self.writer.flush()

Example Usage:

with tf.compat.v1.Graph().as_default():
    logger.log_text(tag="string", value="test", step=0)
    logger.log_text(tag="table", value=[["r0c0", "r0c1"], ["r1c0", "r1c1"]], step=0)

@hanchengyu3
Copy link

在张力流 2.0 上运行时,我遇到一些不兼容的错误。有什么计划来更新这个 - 非常有用的代码?

Hello, has your problem been solved? Which version should be configured to be compatible

@Kisameee
Copy link

tested it and every things worked great with tf 2.4

@hanchengyu3
Copy link

hanchengyu3 commented Oct 14, 2021 via email

@JinProton
Copy link

tested it and every things worked great with tf 2.4

In tf 2.3, it fails with AttributeError: module 'tensorboard.summary._tf.summary' has no attribute 'FileWriter'

@Robotislove
Copy link

Anyone can tell me how can I use summary add_graph to show modal structure.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment